
Patrick Knott Studios
January 16, 2014

Tech Support Tracker

(Webform)

and

Student Administration Tool

(MVC)

www.KnottStudios.com
pjk29890@yahoo.com

www.linkedin.com/in/KnottStudios
Overview:

This project has been designed to utilize the majority of skills learned up to this point. The core of this project is an ASP.NET 4.0 website that utilizes ADO.NET to manage/persist trouble ticket data, and to track any people and status changes to these tickets.

Minimum Requirements:

Secure/Admin/ManageDepartments.aspx (Folder Level Security):

· Master-Detail multiview of departments.

· Page Only available to admin users.

· Master view should be set to all departments.

· CRUD functionality (Soft Delete with Return Confirm).

· Inserting and/or Editing the department will take the user back to the master view.

Secure/Admin/ManageEmployees.aspx (Folder Level Security)

· Master-detail multiview of employees.

· Page only available to admin users.

· Master view should be set to only active employees, but be filterable to inactive employees.

· CRUD functionality (Soft Delete with Return Confirm).

· Inserting and/or Editing the employees will take the user back to the master view.

Requests.aspx:

· Master-detail multiview of requests.

· Master view should be set to only open requests.

· Anonymous users can only view master-detail read-only mode.

· If logged in, can insert new request (but may not edit).

· Authenticated users should be able to filter between either open (pending or in process) and Resolved Requests.

My TST (Webform)

I decided that the best way to design a tool is to have a concept. I believed that choosing a concept that other people would enjoy was key to making a successful project. I chose to do a Final Fantasy 7 theme project.

The Steps I took:
1. I gathered concept art from the game.
2. I designed a database, and ensured I had a variable to meet the requirements of the art, which I named HOURS.

3. I designed the master page and home page, trying to make the home menu look like the menu from the art.

4. I designed the status, jobs, and departments page, attempting to make them look like in game menus. I placed all of these on the SAME PAGE and utilized a multiview to pass values.

5. I designed the employee page and attempted to make it look like profile and character selection pages from the game. I gave this page links to the previous three multiviews and used query strings to change the view from the employee page.

6. Finally, I designed the Request page. I wanted it to appear like the battle pages and utilized the art and concepts from the previous pages.

7. I added entity framework through a class due to an error at the beginning of the project when I created the solution as a project rather than a webpage.
8. I utilized the class to gather employee hours and assign the label with assigned hours / allotted hours and used a table with a td % width to represent the limit gauges for each employee.

Additional Features:
1. Passing Query Strings to set multiviews.
2. Hours in the database and the use of entity framework to work with the hours.

3. Search functionality on Employee.aspx for employee names.

4. DDL list search by active employee functionality on the Request.aspx.

5. Sort functionality through checkboxes on gridviews.

6. I designed my own Regular Expression for my Hours Datatype, which is formatted as ###.#; My regular expression is: ^\d{0, 3}(\.[0-9])?$
7. I designed a Custom Error Page.

8. I utilized three file upload controls for images.
9. I utilized 3 separate techs: Tech, CoTech, and Tech Assistant in conjunction with the game and battle design of the concept art.

10. I utilized multiviews to separate all login functionality on the login page including Contacts. The moogle on the login page changes through code behind when mail is sent.

11. The background of the Request page changes through the C# code.

12. A Javascript Date-Picker was used for selecting dates.
13. The request and close date on the Request.aspx ticket are automatically time stamped with DateTime.Now.
14. The table (limit gauge) and label displaying hours are made visible and the values are set through the code behind based upon the Tech’s, CoTechs, or TA’s assignment to the ticket.

15. I utilized Form views and styled templates in the Gridview.
16. New Users are automatically added to the employee role.

Security:
· Anonymous
· Review the Request page and specific requests.
· Sign up for an account.
· Contact the webpage designer via Contact page.
· Authenticated (link based security)

· Submit a ticket with a picture on the Request.aspx page.

· Tech (folder based security)

· Access all functionality of the Request.aspx page.

· Admin (folder based security)

· Update and deactivate, soft delete, employees

· Update and deactivate, soft delete, departments.

· Hard delete and update statuses

· Hard delete and update jobs.

Concept Art:

[image: image1.jpg]NesoLoer
0 29s. 318 next cver soro
PR [e

Suengh 19
Bestenty

Vitainy:
Magle
S

the
Actack
Attacky
Defance
Berensex
Magic stk
Maglc aer
Magic e

2

EQ

sazo | States

(A
agic

Wen: Buster Sword
oo

ronze sangle

[image: image2.jpg]J e |
cem
Mapi
o oot | Masera
- Eap
. 938 Lint el
e e, | st
O
vute pestiever | Contlg
1 level 1 (i3
e v
o —_— ol
[0 T——
P (Vi [oo
901, 919 imit level 1 [TIMe12:4
- el [o

More Concept Art:

[image: image3.jpg]

[image: image4.jpg]SPECIALTIME

3720 572 " 30:

e

_409; 409 121
S516: 516 57 i

Here is a copy of my database:

[image: image5.jpg]FarickknoreTST TSTPriority
CatabaseO1/11/15 TsTEmployees e
o e Oy o tie s
9 Emid m o
Taei> " o
TSTDepartments Festame neschaton) o
‘Coann Name Oy Ao e e e e -

9 e n o Phone neahtsn) @ o]
Desame neacha(100) o e neschatan) @ =
Descpion neacha(1000 @ Hrepe caeeme o ——
e 5 5} Nors] @ oo

5} Houspetiesk cacmats,) o ——
DesiD> » o
Phos nuacha(MAY) 7] fro=ox ::;:";:k“
e 5 o S

T ot) @

Coamn e DuaTyre Alow Nals o = et

o T " o ——

e P
e) o =
Colemttors | OomTypn | Al | [lge
¢ s> o
Sanatame macwGd [
o

My Background Code:

[image: image6.jpg]public partial class Requests : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
ik
#region backgrounds
Random rand = new Random();
int bgint = rand.Next(6);
switch (bgint)
{
case 0:
ManageReq. Style.Add("background-image”, "url(’/images/Background/ff7Cargo.png’)");
break;
case 1:
ManageReq. Style.Add("background-image”, "url(’/images/Background/ff7gelnika.png')");
break;

case 2:
ManageReq. Style.Add("background-image”, “"url(’/images/Background/ff7huy.png')");
break;

case 3:

ManageReq. Style.Add("background-image”, "url(’/images/Background/ff7Sectord.png’)");
break;

My Table/Label Code:

[image: image7.jpg]alihad Requests.aspx bimoinninbddcencrimeicd
ests

- ®, fuRequest_PreRender(object sender, EventArgs)
if (fvRequest.CurrentMode != FormViewtode.Insert && gvRequests.SelectedIndex != -1)
{

TSTDBEntities db = new TSTDBEntities(); //database access

TSTRequest request = db.TSTRequests.Single(x => x.JobID == (int)gvRequests.SelectedValue); //selects this job.

[rech]

#region TA
if (request.TSTEmployee2 != null)
{

TSTEmployee ta = request.TSTEmployee2; //selects the tech from this job.

decimal taemphours = ta.HoursPerWeek; //selects the tech’s hours/week.

HtmlTableCell tdiTAHours = (HtmlTableCell)fvRequest.FindControl("tdiTAHours");

Label 1b1TA = (Label)fvRequest.FindControl("1b1TA");

decimal? tahours = ta.TSTRequestsl.Where(x => x.JobStatusID <= 3).Sum(x => x.HourstoComplete) ?? 0;
decimal? tahours2 = ta.TSTRequests2.Where(x => x.JobStatusID <= 3).Sum(x => x.HourstoComplete) ?? @
decimal? tahours3 = ta.TSTRequests3.Where(x => x.JobStatusID <= 3).Sum(x => x.HourstoComplete) ?? 0;

//= techhours.ToString() + "+" + techhours2.ToString() + "+" + techhours3.ToString();
decimal tahrs;

tahours += tahours2 + tahours3;
if (tahours == null)

{
tahours = 0;
}
tahrs = (decimal)tahours;

Possible Plans for future development:
1. Make the employee hours show up upon DDL selection in the Request fv during editing so that assigners are aware of current tech hours during assignment.

2. Update the Requester field to reflect whoever is signed in.

3. Add animations on button clicks.

4. Make Mobile Responsive.

5. Add Quest Names.

SAT
Overview:

I had less time to work on the MVC project than I did on the first web forms project. Our first project was detailed on Monday of the first week. This project began this Monday. Ergo, there was a whole weekend and a day worth of difference in CSS and other code. I initially prepared for SAT by ripping all of the CSS from the UCM website as I initially intended to present a functional SAT ticket for my alma mater custom built by an alumni. However, after deliberation and consultation with an administrator, I decided to build a fictional website after all.

I began with a responsive template. As my own custom built personal website is mobile-ready except for a jQuery slider, I had plenty of practice in making and keeping a webite mobile ready. As I customized each view, I ensured it was mobile responsive. Then, I built upon what I just made, and so on, for a snowball effect. A database was provided for us with instructions not to modify the design.
Student & Schedule Administration Tool Requirements:
This project has been designed to utilize the majority of skills that you have learned up to this point. The core of this project is an ASP.NET MVC 3 website that utilizes Entity Framework to manage and persist Course, Student and Scheduled Class data.

The minimum requirements for this project are as follows:

Phase 1:

•
Anonymous users should be able to view:

1. Home page – Home/Index

2. About page – Home/About

3. Contact page with functioning contact form – Home/Contact

4. Active Course Listing – Courses/Index & Courses/Details

•
Administrators should be able to:

1. View/Create/Edit/Delete Courses

2. View/Create/Edit/Delete Students

3. Upload/Edit a Student Image

4. View/Create/Edit/Delete Course Statuses

5. View/Create/Edit/Delete Student Statuses

•
Website menu should reflect logged in user’s capabilities

1. All Admin menu items should be hidden until an Admin logs in

•
Metadata classes should be used to add additional information for validation and display values

•
Controllers to create for Phase 1

· Course

· CourseStatus

· Student

· StudentStatus

Phase 2:

•
Anonymous users should be able to view:

1. Scheduled Classes – ScheduledClasses/Index & ScheduledClasses /Details

•
Administrators should be able to:

1. View/Create/Edit/Delete Scheduled Classes

2. View/Create/Edit/Delete Scheduled Class Statuses

3. jQuery UI DatePicker should be used for start and end dates

•
Controllers to create for Phase 2

· ScheduledClass

· ScheduledClassStatus

Phase 3: Extra – (Not required for project completion)

•
Ensure that the site is responsive in nature and will support viewport widths as small as 320px

•
Administrators should be able to:

1. View/Create/Edit/Delete Enrollments

2. Drop Down Lists for Student and Scheduled Class should display relevant information

3. Student – Student Name and ID

4. Class – Start Date and Course Name

•
Enrollments should be filtered by Scheduled Class

1. Use a DropDownList for filtering

•
Each record on the ScheduledClasses/Index view should link to the enrollments for that class. i.e. Users should see a link that says “View Enrollments” for each Scheduled Class that will link to an action/view that shows only enrollments for that particular class.
The Steps I took:

1. Reviewed the requirements and supplied database.
2. I set up the buddy class for emails and set up the email page.
3. I set up the metadata partial classes for validation.
4. I completed the biggest table, the Student Table, as I had previous experience with creating a profiles for employees from my MVC project. I utilized some of the same techniques to have student profiles.
5. I designed the first support lookup table and then utilized the same code for each one afterwards. Generally, I began with the Index view, went to the Details View, then the Edit View, the Create View, and then the Delete View. I attempted to keep the css and layout the same or similar for each controller. I finished each of the 4 support lookup tables for statuses.
6. I designed the courses views followed by the scheduled classes view, as some of the css and functionality was transferrable.
7. Finally, I completed the Enrollment table which is a junction table without a composite key.
8. In my enrollments view, I ensured I had code to sort students by course. A sample of that code is below.
9. Finally, I tested my site against the requirements.
CODE Sample:

[image: image8.jpg]int x = 155
int studNum = 0;}
.

oreach (var item in Model)

{

if (x < item.scheduledClassId)

{
x = item.scheduledClassId;

}

if (x == item.scheduledClassId)

{
if(studhum I= @)
{
<div class="studCount">Students enrolled: @Html.Label(studNum.ToString())</div>
studhum = 0;
}

<h3 class="indexcom">@Html.DisplayFor(modelltem => item.SATScheduledClass.Display)</h3>
x 4= 1;

}

<div class="studentbody">
<div>IHtm1.Displachr(mcdelItem => item.SATStudent.Display)</div>
<div>@Html.ActionLink("Edit", "Edit", new { id=item.enrollmentId })
Html. ActionLink("Details”, “Details”, new { id=item.enrollmentId })
Html.ActionLink("Delete”, "Delete”, new { id=item.enrollmentId })</div>|

Database:

[image: image9.jpg]SaTDatabase e
§ oramens = =l
- o
SATStudents hoo| st - o
Camtene OaaTie Ak ias canctoss ewmme [
9 s w o o
T |
e newwm O
e @ %
ot mevem
e newm @ ‘SATScheduledClasses
£ — @ [Frarepy
= —m 9 wememm O
-) @ e L3 O
— — | ane e @
= e W s P
awan o cwven e @
e nciters e @
o e .
sats - o
o
SATStudentStatuses
s = « =)
e mewwm O

‘SATCourseStatuses

“ o
ey 0
o

SATCourses

D o
s e 0
P]
et e @
crim e @
- — @
wwen o

o

Additional Features:

1. My SAT site is fully mobile.
2. I custom designed the Zelda elements in the site.
3. I added a Zelda font.
4. I have added sort functionality to the enrollments index so that it automatically displays all students in each class, and each class only once.
5. My drop down list for states displays all 50 states through a uihint.
6. All of my views are customized to look and feel like a comprehensive customized website. All of the details from each of the views were custom created by me. I attempted to maintain the same flow between similar elements in each controller.
7. I added a custom error page.
8. I added a superadmin roll that has access to deleting items. I then added 4 employer id’s that can be utilized to by viewers to test my website. Those IDs are: employer, employer1, employer2, employer3; The passwords for each one is: emp1@34,

9. My login page utilizes my peer’s SAT webite links to mask the admin field. When a user is logged in as an admin, my peer’s links disappear and are replaced by administration links.
10. My enrollment page displays how many students are in enrolled in each class.
Possible Plans for future development:

1. Add more CSS and customize the website to be more graphically intense.

2. Develop more action links from controller to controller.

